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Catalan Numbers

Cn =
1

n+1

(
2n
n

)
The number of full binary tree with 2n + 1 vertices (i.e., n internal
vertices).

The number of triangulations of a convex (n + 2)-gon.

The number of semi-pyramid with n dimers.
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Catalan Numbers

There are more than 200 such objects!!
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Three Types of Trees

Binary Trees

Full Binary Trees

Planar Trees

Tri Lai Bijection Between Catalan Objects



Three Types of Trees

Tri Lai Bijection Between Catalan Objects



Three Types of Trees
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Bijection Between Binary Trees and Full Binary Trees

Theorem

The number of binary trees (not necessarily full) of n vertices is equal to
the number of full binary trees with 2n + 1 vertices.
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Bijection Between Binary Trees and Full Binary Trees

Theorem

The number of binary trees (not necessarily full) of n vertices is equal to
the number of full binary trees with 2n + 1 vertices.

Hint: We already learned the bijection!
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Bijection Between Binary Trees and Full Binary Trees

Tri Lai Bijection Between Catalan Objects



Planar Trees
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The Number of Planar Trees

Theorem

The number of planar trees with n + 1 vertices is Cn.

Exercise: Prove by generating function.
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The Number of Planar Trees

Theorem

The number of planar trees with n + 1 vertices is Cn.

Exercise: Prove by generating function.
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The Number of Planar Trees

Theorem

The number of planar trees with n + 1 vertices is Cn.

We need to show

y =
∑

n≥0 Cnx
n+1 = xf

f is the generating function of the binary tree.
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The Number of Planar Trees

Theorem

The number of planar trees with n + 1 vertices is Cn.

y = x + xy
1−y

xf satisfies the same recurrence.
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Bijection Between Binary Trees and Planar Trees
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Bijection Between Binary Trees and Planar Trees
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Bijection Between Binary Trees and Planar Trees
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Bijection Between Binary Trees and Planar Trees
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Three Types of Paths

Dyck Paths

2-Colored Motzkin Paths

Lukasiewicz Paths
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Dyck Path

A Dyck path of length 2n is a lattice path:

1 From (0, 0) to (2n, 0);

2 Use the element steps ↗ and ↘;

3 Never go below the x-axis.
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Dyck Path

Theorem

The number of Dyck paths of length 2n is Cn.

Exercise: Prove by generating functions.
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Dyck Path

Theorem

The number of Dyck paths of length 2n is Cn.

Prove by reflecting principle.
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Dyck Path

# Dyck paths = # General paths - # ‘Bad’
paths
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Dyck Path

# Dyck paths =
(

2n
n

)
- # ‘Bad’ paths
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Dyck Path

# Dyck paths =
(

2n
n

)
- # ‘Bad’ paths
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Dyck Path

# Dyck paths =
(

2n
n

)
- # ‘Bad’ paths

Tri Lai Bijection Between Catalan Objects



Dyck Path

# Dyck paths =
(

2n
n

)
-
(

2n
n+1

)
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Motzkin Path

A Motzkin path of length n is a lattice path:

1 From (0, 0) to (n, 0);

2 Use the element steps ↗, ↘, and →;

3 Never go below the x-axis.
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Motzkin Path

Exercise: Prove the following recurrence for the o.g.f. m of Motzkin
paths:

m = 1 + xm + x2m2
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2-colored Motzkin Path

A 2-colored Motzkin path of length n is a lattice path:

1 From (0, 0) to (n, 0);

2 Use the element steps ↗, ↘, and →;

3 Never go below the x-axis.

4 The horizontal steps are colored by red or blue.

Theorem

The number of 2-colored Motzkin paths of length n − 1 is Cn.

Exercise: Prove by generating function.
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Bijection: 2-colored Motzkin Paths and Dyck paths
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Bijection: 2-colored Motzkin Paths and Dyck paths
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Lukasiewicz Path

A Lukasiewicz path of length n is a lattice path:

1 From (0, 0) to (n, 0);

2 Use the element steps: ↗ of arbitrary height, ↘ of depth 1, and →;

3 Never go below the x-axis.
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Lukasiewicz Path

Theorem

The number of Lukasiewicz paths of length n is Cn.

Prove by generating functions.

Tri Lai Bijection Between Catalan Objects



Bijection Between Dyck Paths and Lukasiewicz Paths
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Bijection Between Dyck Paths and Lukasiewicz Paths
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Bijection Between Dyck Paths and Lukasiewicz Paths
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Exercise

Prove bijectively:

1 (4n + 2)Cn = (n + 2)Cn+1

2 (Touchard identity) Cn+1 =
∑

1≤i≤bn/2c
(
n
2i

)
Ci2

n−2i
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Bijection Between Trees and Paths
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Left-first Search (a.k.a. ‘Preoder’)

We visit the trees recursively as follow:

1 The root

2 The left subtree

3 The right subtree
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Example

1

2

3

4
5

6 7

8

9

10

11

12

13

14

15 16

17
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Bijection: Dyck Paths – Full Binary Tree

1

2

3

4

5

6 7

8

9

10

11

12

13

14

15 16

17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
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Bijection: Dyck Paths – Full Binary Tree

1

2

3

4

5

6 7

8

9

10

11

12

13

14

15 16

17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Index the tree by the preoder;

Travel around the tree;

Meet an internal vertex, then go up; meet a leaf, then go down.
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Bijection: Dyck Paths – Full Binary Tree

1

2

3

4

5

6 7

8

9

10

11

12

13

14

15 16

17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Prove that the map is well-defined.
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Bijection: Dyck Paths – Full Binary Tree

1

2

3

4

5

6 7

8

9

10

11

12

13

14

15 16

17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Prove that the map is indeed a bijection.
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Reciprocal Bijection: Dyck Paths – Full Binary Tree
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Reciprocal Bijection: Dyck Paths – Full Binary Tree
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Reciprocal Bijection: Dyck Paths – Full Binary Tree
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Reciprocal Bijection: Dyck Paths – Full Binary Tree
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Reciprocal Bijection: Dyck Paths – Full Binary Tree

x
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Reciprocal Bijection: Dyck Paths – Full Binary Tree

x
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Reciprocal Bijection: Dyck Paths – Full Binary Tree

x

x x

x
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Reciprocal Bijection: Dyck Paths – Full Binary Tree

*

x

x x

x x

x

x x
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Bijection: Binary Trees and Motzkin Paths

1

2

3

4
5

6 7

9
10

11

12
13

14

8
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Bijection: Binary Trees and Motzkin Paths

1

2

3

4
5

6 7

9
10

11

12
13

14

8
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Bijection: Binary Trees and Motzkin Paths

1

2

3

4
5

6 7

9
10

11

12
13

14

8

1 2 3 4 5 6 7 8 9 10 11 12 13

Exercise:Prove that the map is well-defined and that the map is bijective.
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Bijection: Planar Trees and Lukasiewicz Paths

14

1

2

3

4

5

6

7

8

9
10

11

12

13

14 15

1 2 3 4 5 6 7 8 9 10 11 12 13

The height of step i is d(i)− 1.
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Bijection: Planar Trees and Dyck Paths
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Bijection: Planar Trees and Dyck Paths
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Bijection: Planar Trees and Dyck Paths
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Bijection: Planar Trees and Dyck Paths
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Bijection: Planar Trees and Dyck Paths
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Bijection on Staircase Polygons
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The Number of Staircase Polygons

Theorem

The number of staircase polygons of perimeters 2n + 2 is equal to Cn.

Tri Lai Bijection Between Catalan Objects



Bijection: Staircase Polygons – 2-colored Motzkin Paths
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Bijection: Staircase Polygons – 2-colored Motzkin Paths
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Bijection: Staircase Polygons – 2-colored Motzkin Paths
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Bijection: Staircase Polygons – Dyck Paths

2
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Bijection: Staircase Polygons – Dyck Paths

3 3
2
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Bijection: Staircase Polygons – Dyck Paths

4

2
3 3

4
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Bijection: Staircase Polygons – Dyck Paths

1

1

3
1

2 1
3

2
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Bijection: Staircase Polygons – Dyck Paths

1

1
3

2
1

1

3

Tri Lai Bijection Between Catalan Objects



Bijection: Staircase Polygons – Dyck Paths

2
1

3
1

3 1
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Bijection: Staircase Polygons – Dyck Paths

2
1

3
1

1
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Bijection: Staircase Polygons – Dyck Paths

2
1

3
1
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Non-crossing partitions

A non-crossing partition of {1, 2, . . . , n} is a set partition
{B1,B2, . . . ,Bk} such that: There are no a < b < c < d with a, c ∈ Bi

and b, d ∈ Bj (i 6= j).
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Non-crossing partitions

Visualize the n-set S as the vertex set of a regular n-gon.

Each subset (or block) in a set partition of S is a polygon containing
the corresponding vertices.

A non-crossing partition is a set partitions such that the polygons
corresponding to the blocks are non-intersecting.
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Non-crossing partitions
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Non-crossing partitions
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Bijection: Non-crossing partitions– Dyck Paths

12

11

10

9

87

6

5

4

32

1

13
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Bijection: Non-crossing partitions– Dyck Paths

13

4 12

11

10

9

6

5

7

32

1

13

12

11

10

9

87

6

5

4

32

1

8
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Bijection: Non-crossing partitions– Dyck Paths

{5,6,8,9}{7}{1,3,4}{2}

8

13

4 12
11

10

9

6

5

7

32

1

{10,11,12,13}
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Bijection: Non-crossing partitions– Dyck Paths

13

12

11

10

9

8 6

5

4

3

2

1

{10,11,12,13}{5,6,8,9}{7}{1,3,4}{2}

8
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5

7
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7

Homework: Prove that this map is well-defined and is a bijection.
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Chord Diagrams

1
2

3

4

5

6

7

8

9

10

11

12
1314

15

16

17

18

19

20

21

22

23

24

25
26

Paring 2n vertices around the circle by chords;

The chords are non-intersecting.
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Chord Diagrams

1
2

3

4

5

6

7

8

9

10

11

12
1314

15

16

17

18

19

20

21

22

23

24

25
26

Theorem

The number of chord diagrams of 2n vertices is Cn.

Tri Lai Bijection Between Catalan Objects



Bijection: Dyck Paths – Chord Diagrams

24

1
2 3 4

5 6
7
8 9

10
11 12

13

14 15
16
17
18
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20

22 23

25
26

21
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Bijection: Dyck Paths – Chord Diagrams

14
15

16

17

18
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Parenthesis System

Legal: ((()())())(()()), ((())()(()()))()()
Ilegal: (()(())))()()((), ((()(()()))))(()()(())

Theorem

The number of (legal) systems of n pairs of parentheses is Cn.
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Bijection: Dyck Paths –Parenthesis System

Legal: ((()())())(()()), ((())()(()()))()()
Ilegal: (()(())))()()((), ((()(()()))))(()()(())

)

1
2 3 4

5 6
7
8 9

10
11 12

13

14 15
16
17
18

19

20

22 23

25
26

21 24

( ( ) ( ( ) ) ) ( ( ( ) ( ( ) ) ) ) ( ( ( ( ) ) )
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Triangulation of convex polygon

Theorem

The number of triangulations of a convex (n + 2)-gon is Cn.
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Bijection: Triangulations – Full Binary Trees
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Bijection: Triangulations – Full Binary Trees
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Bijection: Triangulations – Full Binary Trees
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Reciprocal Bijection: Triangulations – Full Binary Trees
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Reciprocal Bijection: Triangulations – Full Binary Trees
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Reciprocal Bijection: Triangulations – Full Binary Trees
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Reciprocal Bijection: Triangulations – Full Binary Trees
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Reciprocal Bijection: Triangulations – Full Binary Trees
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Reciprocal Bijection: Triangulations – Full Binary Trees
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Reciprocal Bijection: Triangulations – Full Binary Trees
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Reciprocal Bijection: Triangulations – Full Binary Trees
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Reciprocal Bijection: Triangulations – Full Binary Trees
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Ordered Pair of Increasing Sequences

A pair of increasing sequences 0 < a1 < a2 < . . . < ak < n and
0 < b1 < b2 < . . . < bk < n is said to be ordered if ai ≥ bi .
Example:

2 4 7 12 14 17
1 2 7 11 12 13

Theorem

The number of ordered pairs of sequence of order n is Cn.
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Bijection: Ordered Pairs –Dyck Paths

20

20 4 7 12 14 17 20

1
2

11
12
13

7
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Bijection: Ordered Pairs –Dyck Paths

20

20

7

13
12
11

2

20 4 7 12 14 17

1
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Exercise

Prove bijectively:

1 (4n + 2)Cn = (n + 2)Cn+1

2 (Touchard identity) Cn+1 =
∑

1≤i≤bn/2c
(
n
2i

)
Ci2

n−2i
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Prove (4n + 2)Cn = (n + 2)Cn+1

Pick a vertex randomly from a full binary tree with 2n + 1 vertices.
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Prove (4n + 2)Cn = (n + 2)Cn+1

Choose one of two options: slide the subtree to the left or to the right.
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Prove (4n + 2)Cn = (n + 2)Cn+1

Add the missing leaf, and mark it.
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Prove (4n + 2)Cn = (n + 2)Cn+1

We get a full binary tree with 2n + 3 vertices and a marked leaf.
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Prove (4n + 2)Cn = (n + 2)Cn+1: Second solution.

3

n+2

n+3 1
2

Pick a base in a (n + 3)-gon.
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Prove (4n + 2)Cn = (n + 2)Cn+1: Second solution.

2

3

n+2

n+3 1

Pick a base in a (n + 3)-gon, then mark randomly an edge of the polygon
different from the base.Tri Lai Bijection Between Catalan Objects



Prove (4n + 2)Cn = (n + 2)Cn+1: Second solution.

3

n+2

n+1n+1

1

2

3

n+2

n+3
1

2

Collapse the marked edge to obtain a triangulation of a (n + 2)-gon,
marked and orient the merged edge or diagonal.
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Exercise

Prove bijectively:

1 (4n + 2)Cn = (n + 2)Cn+1

2 (Touchard identity) Cn+1 =
∑

1≤i≤bn/2c
(
n
2i

)
Ci2

n−2i
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Prove Touchard Identity

Work on the RHS:

Pick a Dyck path of length 2i in Ci ways.
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Prove Touchard Identity

Pick a 2i-subset of {1, 2, . . . , n} in
(
n
2i

)
ways.

Tri Lai Bijection Between Catalan Objects



Prove Touchard Identity

Pick a 2i-subset of {1, 2, . . . , n} in
(
n
2i

)
ways.
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Prove Touchard Identity

Work on the RHS:

Break the Dyck path.
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Prove Touchard Identity

Work on the RHS:

Add n − 2i horizontal steps.
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Prove Touchard Identity

Work on the RHS:

Color n − 2i horizontal steps in 2n−2i ways.
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Prove Touchard Identity

Work on the RHS:

Pick a Dyck path of length 2i in Ci ways.

Pick a 2i-subset of {1, 2, . . . , n} in
(
n
2i

)
ways.

Break the Dyck path and add n − 2i horizontal steps.

Color n − 2i horizontal steps in 2n−2i ways.

Get a 2-colored Motzkin paths of length n.

Corollary

The number of 2-colored Motzkin paths of length n with n− 2i flat steps
is
(
n
2i

)
Ci2

n−2i .
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Restricted Dyck paths

Theorem

The number of UUU-free Dyck paths of length 2n is Mn, the number of
(monochromatic) Motzkin paths of length n.

Exercise: Prove the theorem.
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Restricted Dyck paths

Theorem

(i) The number of Dyck paths of length 2n containing exactly k ‘UDU’s
is
(
n−1
k

)
Mn−1−k .

(ii) The number of Dyck paths of length 2n containing exactly k ‘DDU’s
is
(
n−1
2k

)
2n−1−2kCk .
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Bijection: 2-colored Motzkin paths – Restricted Dyck
paths (Callan 2004)

Append a D step. Replace D by UDD.
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Bijection: 2-colored Motzkin paths – Restricted Dyck paths

Replace F by UD.
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Bijection: 2-colored Motzkin paths – Restricted Dyck paths

Replace F by U and insert a D immediately before its associated down
step. Remove the last D step.
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Bijection: 2-colored Motzkin paths – Restricted Dyck paths

Exercise:

1 Prove that this map is indeed a bijection.

2 # flat steps in 2-colored Motzkin path = # UDUs in the Dyck path.

3 # down steps in 2-colored Motzkin path = # DDUs in the Dyck
path.
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Proof of part (i)

# Dyck paths of length 2n with k UDUs= # 2-colored Motzkin
paths of length n − 1 with k flat steps.

Cut off these k flat steps from the Motzkin path, we get a
monochromatic Motzkin path of length n − 1− k.

# 2-colored Motzkin paths of length n − 1 with k flat steps=(
n−1
k

)
×# monochromatic Motzkin path of length n − 1− k.

# Dyck paths of length 2n with k UDUs=
(
n−1
k

)
×#

monochromatic Motzkin path of length n − 1− k
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Proof of part (i)

# Dyck paths of length 2n with k UDUs= # 2-colored Motzkin
paths of length n − 1 with k flat steps.

Cut off these k flat steps from the Motzkin path, we get a
monochromatic Motzkin path of length n − 1− k.

# 2-colored Motzkin paths of length n − 1 with k flat steps=(
n−1
k

)
×# monochromatic Motzkin path of length n − 1− k.

# Dyck paths of length 2n with k UDUs=
(
n−1
k

)
×#

monochromatic Motzkin path of length n − 1− k

Tri Lai Bijection Between Catalan Objects



Proof of part (i)

# Dyck paths of length 2n with k UDUs= # 2-colored Motzkin
paths of length n − 1 with k flat steps.

Cut off these k flat steps from the Motzkin path, we get a
monochromatic Motzkin path of length n − 1− k.

# 2-colored Motzkin paths of length n − 1 with k flat steps=(
n−1
k

)
×# monochromatic Motzkin path of length n − 1− k.

# Dyck paths of length 2n with k UDUs=
(
n−1
k

)
×#

monochromatic Motzkin path of length n − 1− k
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Proof of part (i)

# Dyck paths of length 2n with k UDUs= # 2-colored Motzkin
paths of length n − 1 with k flat steps.

Cut off these k flat steps from the Motzkin path, we get a
monochromatic Motzkin path of length n − 1− k.

# 2-colored Motzkin paths of length n − 1 with k flat steps=(
n−1
k

)
×# monochromatic Motzkin path of length n − 1− k.

# Dyck paths of length 2n with k UDUs=
(
n−1
k

)
×#

monochromatic Motzkin path of length n − 1− k
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Proof of part (ii)

# Dyck paths of length 2n with k DDUs = # 2-colored Motzkin
paths of length n − 1 with k down steps.

(Corollary in proof of Touchard Identity) # 2-colored Motzkin paths
of length n − 1 with k down steps=

(
n−1
2k

)
2n−1−2kCk .

# Dyck paths of length 2n with k DDUs =
(
n−1
2k

)
2n−1−2kCk .
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Proof of part (ii)

# Dyck paths of length 2n with k DDUs = # 2-colored Motzkin
paths of length n − 1 with k down steps.

(Corollary in proof of Touchard Identity) # 2-colored Motzkin paths
of length n − 1 with k down steps=

(
n−1
2k

)
2n−1−2kCk .

# Dyck paths of length 2n with k DDUs =
(
n−1
2k

)
2n−1−2kCk .
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Proof of part (ii)

# Dyck paths of length 2n with k DDUs = # 2-colored Motzkin
paths of length n − 1 with k down steps.

(Corollary in proof of Touchard Identity) # 2-colored Motzkin paths
of length n − 1 with k down steps=

(
n−1
2k

)
2n−1−2kCk .

# Dyck paths of length 2n with k DDUs =
(
n−1
2k

)
2n−1−2kCk .
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Bijection: Dyck paths – Semi-pyramids
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Tri Lai Bijection Between Catalan Objects



Bijection: Dyck paths – Semi-pyramids
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Bijection: Dyck paths – Semi-pyramids
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Bijection: Dyck paths – Semi-pyramids
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Bijection: Dyck paths – Semi-pyramids
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Bijection: Dyck paths – Semi-pyramids
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Bijection: Dyck paths – Semi-pyramids

Exercise: Find the reciprocal bijection.
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The height of Dyck paths

The height of a Dyck path is its maximum level.
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The logarithmic height of Dyck paths

A Dyck path w has the height h(w). Then the logarithmic height `h(w)
is

blog2(1 + h(w))c
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The logarithmic height of Dyck paths

`h(w) = k

⇔ 2k − 1 ≤ h(w)) ≤ 2k+1 − 1
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The logarithmic height of Dyck paths

Theorem

The number of Dyck paths of length 2n with logarithmic height k = The
number of full binary trees on n internal vertices and with Strahler
number k.
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Strahler number

k’k

k+1

kk

3

2

2

2

2

2

2

2

1

11

1

11

11

1

max(k, k’)
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Strahler number

k’k

k+1

kk

3

2

2

2

2

2

2

2

1

11

1

11

11

1

max(k, k’)

S(t, x) =
∑

n,k Sn,kx
ktn

Tri Lai Bijection Between Catalan Objects



Strahler number

k’k

k+1

kk

3

2

2

2

2

2

2

2

1

11

1

11

11

1

max(k, k’)

Frangon (1984)
Knuth (2005)

S(t, x) = 1 + xt
1−2tS

((
t

1−2t

)2
, x
)
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Bijection increasing the Strahler number
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Bijection increasing the Strahler number

Replace each vertex by a zigzag line.
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Bijection increasing the Strahler number

Replace each vertex by a zigzag line.
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Bijection increasing the Strahler number
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Bijection increasing the Strahler number

Branching out along the zigzag lines.
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Dyck paths

We can do the same with Dyck paths
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Bijection increasing the logarithmic height

Replace each vertex by a 2-colored horizontal path.
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Bijection increasing the logarithmic height

Replace each vertex by a 2-colored horizontal path.
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Bijection increasing the logarithmic height

Replace each vertex by a 2-colored horizontal path.
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Bijection increasing the logarithmic height

Obtaining a 2-colored Motzkin path.
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Bijection increasing the logarithmic height

Converting back a Dyck path.
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Bijection increasing the logarithmic height

Converting back a Dyck path.
Exercise: Prove that the process increases the logarithmic height 1 unit.
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(Another) Chord diagram
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Multiplying Two Chord Diagrams

x = ?
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Multiplying Two Chord Diagrams
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Multiplying Two Chord Diagrams
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Multiplying Two Chord Diagrams

=
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Multiplying Two Chord Diagrams

x = ?
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Multiplying Two Chord Diagrams
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Multiplying Two Chord Diagrams

= q x
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Temperley - Lieb Algebra

The Temperley-Lieb algebra TLn(q) generated by {e1, e2, . . . , en−1}:
1 e2i = qe i
2 e ie j = e je i if |i − j | > 1

3 e ie i+1e i = e ie i−1e i = e i
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Diagram of e i

i+1

i
e

ni21

=
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Diagram of e i

eq
2

e
i

=
i

Tri Lai Bijection Between Catalan Objects



Diagram of e i

ji+1i

|i-j|>1

j ee
ij

j j+1i+1i

=

ee i =

j+1

Tri Lai Bijection Between Catalan Objects



Diagram of e i

i+1

ii+1

i+1

ee
i

i+2i

=

ee
i

=

i
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Exercise

Simplify: e1e2e4e2e1e3e2e3e2e4
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Exercise

1 2 3 4 5

e e e e e e e e
1 2 4 2 1 3 2 3 2 4

e e
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Exercise

1 2 3 4 5

e e e e e e e e
1 2 4 2 1 3 2 3 2 4

e e e e e
1 2 4

= q
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Temperley -Lieb Algebra and Heap

q3 2 4e e e e e1 2 4
= 

1 2 3 4 5

e e e e e e e e1 2 4 2 1 3 2
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Temperley -Lieb Algebra and Heap

The Normalized Temperley-Lieb algebra NTLn(q) generated by
{e1, e2, . . . , en−1} is a Temperley-Lieb algebra with the following patterns
forbidden

1 e2i
2 e ie i+1e i
3 e ie i−1e i
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Temperley -Lieb Algebra and Heap

q3 2 4e e e e e1 2 4
= 

1 2 3 4 5

e e e e e e e e1 2 4 2 1 3 2
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Temperley -Lieb Algebra and Heap
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Temperley -Lieb Algebra and Heap
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Temperley -Lieb Algebra and Heap
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Temperley -Lieb Algebra and Heap

x= q
2
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Temperley -Lieb Algebra and Heap

x= q
2
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Staircase Decomposition
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Staircase Decomposition
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Staircase Decomposition (Strict Heap)
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Staircase Decomposition (Strict Heap)
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Staircase Decomposition (Strict Heap)

e1

e e

e

e e

e

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2 4

6

7 10

14

e

e

e

e e

e

e
2

3

4

6 11

12

15
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Staircase Decomposition (Strict Heap)

e1

e e

e

e e

e

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2 4

6

7 10

14

e

e

e

e e

e

e
2

3

4

6 11

12

15

Lemma

The the higher staircase has the top (bottom) dimer strictly to the left of
that of the lower staircase.

Tri Lai Bijection Between Catalan Objects



Staircase Decomposition (Strict Heap)

e1

e e

e

e e

e

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2 4

6

7 10

14

e

e

e

e e

e

e
2

3

4

6 11

12

15

1 2 4 6 7 10 14
2 3 4 6 11 12 15
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Recall: Bijection: Ordered Pairs –Dyck Paths

20

20

7

13
12
11

2

20 4 7 12 14 17

1
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Strict Heaps – Staircase Polygons
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Strict Heaps – Staircase Polygons
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Strict Heaps – Staircase Polygons
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Strict Heaps – Staircase Polygons
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Strict Heaps – Staircase Polygons
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Heaps – Permutations
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Heaps – Permutations

5

1

1

2

2

3

3

4

4

5
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Heaps – Permutations

5

1

1

2

2

3

3

4

4

5
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Heaps – Permutations

A permutation σ is 321-avoiding if there no i < j < k such that
σ(i) > σ(j) > σ(k).

Theorem

Strict heaps are equinumerous to 321-avoiding permutations.

Presentation Topic 1: Permutations with forbidden patterns and Catalan
numbers.
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q-analogs of Catalan Numbers

q-integer [n]q := 1 + q + q2 + . . .+ qn−1

q-factorial [n]q! := [1]q · [2]q · [3]q . . . [n]q[
n
k

]
q

=
[n]q!

[n−k]q![k]q!
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q-analogs of Catalan Numbers

q-integer [n]q := 1 + q + q2 + . . .+ qn−1

q-factorial [n]q! := [1]q · [2]q · [3]q . . . [n]q[
n
k

]
q

=
[n]q!

[n−k]q![k]q!
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q-binomial Coefficients

[
a + b
a

]
q

=?
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q-analogs of Catalan Numbers

a

b

[
a + b
a

]
q

=?
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q-analogs of Catalan Numbers

a

b

[
a + b
a

]
q

=?
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q-analogs of Catalan Numbers

a

b

∑
F⊂[a×b]

qarea(F) =

[
a + b
a

]
q
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q-analogs of Catalan Numbers

a

b

∑
F⊂[a×b]

qarea(F) =

[
a + b
a

]
q

Exercise: Prove that the number of k-dimensional subspaces of Fn
q is[

n
k

]
q

.
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q-analogs of Catalan Numbers

a

b

∑
F⊂[a×b]

qarea(F) =

[
a + b
a

]
q

Exercise: Denote by p(j , k , n) the number of integer partitions of n into
at most k parts and each part is at most j . Then∑

n

p(j , k , n)qn =

[
j + k
k

]
q

.
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q-analogs of Catalan Numbers

A q-analog of Catalan numbers

Cn(q) :=
1

[n + 1]q

[
2n

n

]
q
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q-analogs of Catalan Numbers

A q-analog of Catalan numbers

Cn(q) :=
1

[n + 1]q

[
2n

n

]
q
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q-analogs of Catalan Numbers

Cn(q) :=
1

[n + 1]q

[
2n
n

]
q
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q-analogs of Catalan Numbers

3 8 12 18

Cn(q) :=
1

[n + 1]q

[
2n
n

]
q
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q-analogs of Catalan Numbers

maj(w) = 3 + 8 + 12 + 18 = 31

3 8 12 18

Cn(q) :=
1

[n + 1]q

[
2n
n

]
q
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q-analogs of Catalan Numbers

3 8 12 18∑
Dyck path w ; |w |=2n

qmaj(w) =
1

[n + 1]q

[
2n
n

]
q

Tri Lai Bijection Between Catalan Objects



q-analogs of Catalan Numbers

area(w) = 18
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q-analogs of Catalan Numbers

∑
Dyck path w

qarea(w)t |w |/2
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q-analogs of Catalan Numbers

Theorem

∑
Dyck path w

qarea(w)t |w |/2 =
1

1−
t

1−
tq

1−
tq2

1−
tq3

1−
tq4

1−
tq5

1−
tq6

1− · · ·
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Polya q-Catalan Numbers
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Polya q-Catalan Numbers
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Polya q-Catalan Numbers

q-Bessel functions
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(q, t)-Catalan Numbers

Bounce

Tri Lai Bijection Between Catalan Objects



(q, t)-Catalan Numbers

Bounce
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(q, t)-Catalan Numbers

Bounce
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(q, t)-Catalan Numbers

Bounce
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(q, t)-Catalan Numbers

Bounce
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(q, t)-Catalan Numbers

bounce(w) = 4 + 6 + 9 + 11

012345678910111213
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(q, t)-Catalan Numbers

bounce(w) = 4 + 6 + 9 + 11 = 30

012345678910111213
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(q, t)-Catalan Numbers

area and bounce statistics have the same distribution!
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(q, t)-Catalan Numbers

area and bounce statistics have the same distribution!∑
Dyck path w

qarea(w) =
∑

Dyck path w

qbounce(w)
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(q, t)-Catalan Numbers

(q, t)-Catalan Numbers:

Cn(q, t) =
∑

Dyck path w ; |w |=2n

qarea(w)tbounce(w)
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(q, t)-Catalan Numbers

Cn(q, t) =
∑

Dyck path w ; |w |=2n

qarea(w)tbounce(w)

This polynomial is symmetric in q, t:

Cn(q, t) = Cn(t, q)
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(q, t)-Catalan Numbers

Cn(q, t) =
∑

Dyck path w ; |w |=2n

qarea(w)tbounce(w)

This polynomial is symmetric in q, t:

Cn(q, t) = Cn(t, q)

There is no bijective proof!
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Original definition of (q, t)-Catalan Numbers

aa’

l’

l

A. Garsia, M. Haiman (1994)

Cn(q, t) =
∑
λ`n

t2
∑

c∈λ lq2
∑

c∈λ a(1− t)(1− q)
∏

c∈λ(1− qa
′
t l

′
)
∑

c∈λ q
a′t l

′∏
c∈λ(qa − t l+1)(t l − qa+1)

Presentation Topic 2: (q, t)-Catalan numbers.
Presentation Topic 3: ‘Kepler Towers’ and Catalan numbers.
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