Bijection Between Catalan Objects

Tri Lai

University of Nebraska-Lincoln Lincoln NE, 68588

October 3, 2018

Catalan Numbers

$$C_n = \frac{1}{n+1} \binom{2n}{n}$$

- The number of full binary tree with 2n + 1 vertices (i.e., n internal vertices).
- The number of triangulations of a convex (n+2)-gon.
- The number of semi-pyramid with *n* dimers.

Catalan Numbers

There are more than 200 such objects!!

Three Types of Trees

- Binary Trees
- Full Binary Trees
- Planar Trees

Three Types of Trees

Three Types of Trees

Theorem

The number of binary trees (not necessarily full) of n vertices is equal to the number of full binary trees with 2n + 1 vertices.

Theorem

The number of binary trees (not necessarily full) of n vertices is equal to the number of full binary trees with 2n + 1 vertices.

Hint: We already learned the bijection!

Planar Trees

Theorem

The number of planar trees with n+1 vertices is C_n .

Exercise: Prove by generating function.

Theorem

The number of planar trees with n+1 vertices is C_n .

Exercise: Prove by generating function.

Theorem

The number of planar trees with n+1 vertices is C_n .

We need to show

$$y = \sum_{n \geq 0} C_n x^{n+1} = xf$$

f is the generating function of the binary tree.

Theorem

The number of planar trees with n+1 vertices is C_n .

$$y = x + \frac{xy}{1-y}$$

xf satisfies the same recurrence.

Three Types of Paths

- Dyck Paths
- 2-Colored Motzkin Paths
- Lukasiewicz Paths

A Dyck path of length 2n is a lattice path:

- From (0,0) to (2n,0);
- ② Use the element steps \nearrow and \searrow ;
- Never go below the x-axis.

Theorem

The number of Dyck paths of length 2n is C_n .

Exercise: Prove by generating functions.

Theorem

The number of Dyck paths of length 2n is C_n .

Prove by reflecting principle.

Dyck paths = # General paths - # 'Bad' paths

Dyck paths =
$$\binom{2n}{n}$$
 - # 'Bad' paths

$$\#$$
 Dyck paths = $\binom{2n}{n}$ - $\#$ 'Bad' paths

Dyck paths =
$$\binom{2n}{n}$$
 - # 'Bad' paths

Dyck paths =
$$\binom{2n}{n}$$
 - $\binom{2n}{n+1}$

Motzkin Path

A Motzkin path of length n is a lattice path:

- From (0,0) to (n,0);
- ② Use the element steps \nearrow , \searrow , and \rightarrow ;
- Never go below the x-axis.

Motzkin Path

Exercise: Prove the following recurrence for the o.g.f. m of Motzkin paths:

$$m = 1 + xm + x^2m^2$$

2-colored Motzkin Path

A 2-colored Motzkin path of length n is a lattice path:

- From (0,0) to (n,0);
- **②** Use the element steps \nearrow , \searrow , and \rightarrow ;
- Never go below the x-axis.
- The horizontal steps are colored by red or blue.

Theorem

The number of 2-colored Motzkin paths of length n-1 is C_n .

Exercise: Prove by generating function.

Bijection: 2-colored Motzkin Paths and Dyck paths

Bijection: 2-colored Motzkin Paths and Dyck paths

Lukasiewicz Path

A Lukasiewicz path of length n is a lattice path:

- From (0,0) to (n,0);
- ② Use the element steps: \nearrow of arbitrary height, \searrow of depth 1, and \rightarrow ;
- Never go below the x-axis.

Lukasiewicz Path

Theorem

The number of Lukasiewicz paths of length n is C_n .

Prove by generating functions.

Bijection Between Dyck Paths and Lukasiewicz Paths

Bijection Between Dyck Paths and Lukasiewicz Paths

Bijection Between Dyck Paths and Lukasiewicz Paths

Exercise

Prove bijectively:

$$(4n+2)C_n = (n+2)C_{n+1}$$

$$\bullet$$
 (Touchard identity) $C_{n+1} = \sum_{1 \le i \le \lfloor n/2 \rfloor} \binom{n}{2i} C_i 2^{n-2i}$

Bijection Between Trees and Paths

Left-first Search (a.k.a. 'Preoder')

We visit the trees recursively as follow:

- The root
- The left subtree
- The right subtree

Example

- Index the tree by the preoder;
- Travel around the tree;
- Meet an internal vertex, then go up; meet a leaf, then go down.

Prove that the map is well-defined.

Prove that the map is indeed a bijection.

Bijection: Binary Trees and Motzkin Paths

Bijection: Binary Trees and Motzkin Paths

Bijection: Binary Trees and Motzkin Paths

Exercise: Prove that the map is well-defined and that the map is bijective.

Bijection: Planar Trees and Lukasiewicz Paths

The height of step i is d(i) - 1.

Bijection on Staircase Polygons

The Number of Staircase Polygons

Theorem

The number of staircase polygons of perimeters 2n + 2 is equal to C_n .

Bijection: Staircase Polygons – 2-colored Motzkin Paths

Bijection: Staircase Polygons - 2-colored Motzkin Paths

Bijection: Staircase Polygons – 2-colored Motzkin Paths

Bijection: Staircase Polygons - Dyck Paths

Bijection: Staircase Polygons - Dyck Paths

Bijection: Staircase Polygons - Dyck Paths


```
A non-crossing partition of \{1, 2, ..., n\} is a set partition \{B_1, B_2, ..., B_k\} such that: There are no a < b < c < d with a, c \in B_i and b, d \in B_i (i \neq j).
```

- Visualize the n-set S as the vertex set of a regular n-gon.
- Each subset (or block) in a set partition of *S* is a polygon containing the corresponding vertices.
- A non-crossing partition is a set partitions such that the polygons corresponding to the blocks are non-intersecting.

Bijection: Non-crossing partitions— Dyck Paths

Bijection: Non-crossing partitions- Dyck Paths

Bijection: Non-crossing partitions- Dyck Paths

Bijection: Non-crossing partitions— Dyck Paths

Homework: Prove that this map is well-defined and is a bijection.

Chord Diagrams

- Paring 2n vertices around the circle by chords;
- The chords are non-intersecting.

Chord Diagrams

Theorem

The number of chord diagrams of 2n vertices is C_n .

Bijection: Dyck Paths - Chord Diagrams

Bijection: Dyck Paths - Chord Diagrams

Parenthesis System

```
• Legal: ((()())())(()()), ((())()(()()))()()
• Ilegal: (()(())))()((), ((()(()()))))(()(())
```

Theorem

The number of (legal) systems of n pairs of parentheses is C_n .

Bijection: Dyck Paths -Parenthesis System

Legal: ((()())())(()()), ((())()()())()()
 Ilegal: (()(())))()((), ((()(()()))))(()(())

Triangulation of convex polygon

Theorem

The number of triangulations of a convex (n+2)-gon is C_n .

Bijection: Triangulations - Full Binary Trees

Bijection: Triangulations - Full Binary Trees

Bijection: Triangulations - Full Binary Trees

Ordered Pair of Increasing Sequences

A pair of increasing sequences $0 < a_1 < a_2 < \ldots < a_k < n$ and $0 < b_1 < b_2 < \ldots < b_k < n$ is said to be ordered if $a_i \ge b_i$. Example:

Theorem

The number of ordered pairs of sequence of order n is C_n .

Bijection: Ordered Pairs - Dyck Paths

Bijection: Ordered Pairs - Dyck Paths

Exercise

Prove bijectively:

$$(4n+2)C_n = (n+2)C_{n+1}$$

(Touchard identity)
$$C_{n+1} = \sum_{1 \le i \le \lfloor n/2 \rfloor} \binom{n}{2i} C_i 2^{n-2i}$$

Prove $(4n+2)C_n = (n+2)C_{n+1}$

Pick a vertex randomly from a full binary tree with 2n + 1 vertices.

Prove $(4n+2)C_n = (n+2)C_{n+1}$

Choose one of two options: slide the subtree to the left or to the right.

Prove $(4n+2)C_n = (n+2)C_{n+1}$

Add the missing leaf, and mark it.

Prove $(4n+2)C_n = (n+2)C_{n+1}$

We get a full binary tree with 2n + 3 vertices and a marked leaf.

Prove $(4n+2)C_n = (n+2)C_{n+1}$: Second solution.

Prove $(4n+2)C_n = (n+2)C_{n+1}$: Second solution.

Pick a base in a (n + 3)-gon, then mark randomly an edge of the polygon Tri Lai

Prove $(4n+2)C_n = (n+2)C_{n+1}$: Second solution.

Collapse the marked edge to obtain a triangulation of a (n + 2)-gon, marked and orient the merged edge or diagonal.

Exercise

Prove bijectively:

$$(4n+2)C_n = (n+2)C_{n+1}$$

$$\bullet$$
 (Touchard identity) $C_{n+1} = \sum_{1 \le i \le \lfloor n/2 \rfloor} \binom{n}{2i} C_i 2^{n-2i}$

Work on the RHS:

• Pick a Dyck path of length 2i in C_i ways.

• Pick a 2i-subset of $\{1, 2, \dots, n\}$ in $\binom{n}{2i}$ ways.

• Pick a 2i-subset of $\{1, 2, \ldots, n\}$ in $\binom{n}{2i}$ ways.

Work on the RHS:

• Break the Dyck path.

Work on the RHS:

• Add n-2i horizontal steps.

Work on the RHS:

• Color n-2i horizontal steps in 2^{n-2i} ways.

Work on the RHS:

- Pick a Dyck path of length 2i in C_i ways.
- Pick a 2i-subset of $\{1, 2, ..., n\}$ in $\binom{n}{2i}$ ways.
- Break the Dyck path and add n-2i horizontal steps.
- Color n-2i horizontal steps in 2^{n-2i} ways.
- Get a 2-colored Motzkin paths of length n.

Corollary

The number of 2-colored Motzkin paths of length n with n-2i flat steps is $\binom{n}{2i}C_i2^{n-2i}$.

Restricted Dyck paths

Theorem

The number of UUU-free Dyck paths of length 2n is M_n , the number of (monochromatic) Motzkin paths of length n.

Exercise: Prove the theorem.

Restricted Dyck paths

Theorem

- (i) The number of Dyck paths of length 2n containing exactly k 'UDU's is $\binom{n-1}{k}M_{n-1-k}$.
- (ii) The number of Dyck paths of length 2n containing exactly k 'DDU's is $\binom{n-1}{2k} 2^{n-1-2k} C_k$.

Bijection: 2-colored Motzkin paths – Restricted Dyck paths (Callan 2004)

Append a D step. Replace D by UDD.

Bijection: 2-colored Motzkin paths – Restricted Dyck paths

Replace F by UD.

Bijection: 2-colored Motzkin paths – Restricted Dyck paths

Replace F by U and insert a D immediately before its associated down step. Remove the last D step.

Bijection: 2-colored Motzkin paths – Restricted Dyck paths

Exercise:

- Prove that this map is indeed a bijection.
- # flat steps in 2-colored Motzkin path = # UDUs in the Dyck path.
- # down steps in 2-colored Motzkin path = # DDUs in the Dyck path.

• # Dyck paths of length 2n with k UDUs= # 2-colored Motzkin paths of length n-1 with k flat steps.

- # Dyck paths of length 2n with k UDUs= # 2-colored Motzkin paths of length n-1 with k flat steps.
- Cut off these k flat steps from the Motzkin path, we get a monochromatic Motzkin path of length n-1-k.

- # Dyck paths of length 2n with k UDUs= # 2-colored Motzkin paths of length n-1 with k flat steps.
- Cut off these k flat steps from the Motzkin path, we get a monochromatic Motzkin path of length n-1-k.
- # 2-colored Motzkin paths of length n-1 with k flat steps= $\binom{n-1}{k} \times \#$ monochromatic Motzkin path of length n-1-k.

- # Dyck paths of length 2n with k UDUs= # 2-colored Motzkin paths of length n-1 with k flat steps.
- Cut off these k flat steps from the Motzkin path, we get a monochromatic Motzkin path of length n-1-k.
- # 2-colored Motzkin paths of length n-1 with k flat steps= $\binom{n-1}{k} \times \#$ monochromatic Motzkin path of length n-1-k.
- # Dyck paths of length 2n with k UDUs= $\binom{n-1}{k} \times \#$ monochromatic Motzkin path of length n-1-k

• # Dyck paths of length 2n with k DDUs = # 2-colored Motzkin paths of length n-1 with k down steps.

- # Dyck paths of length 2n with k DDUs = # 2-colored Motzkin paths of length n-1 with k down steps.
- (Corollary in proof of Touchard Identity) # 2-colored Motzkin paths of length n-1 with k down steps= $\binom{n-1}{2k}2^{n-1-2k}C_k$.

- # Dyck paths of length 2n with k DDUs = # 2-colored Motzkin paths of length n-1 with k down steps.
- (Corollary in proof of Touchard Identity) # 2-colored Motzkin paths of length n-1 with k down steps= $\binom{n-1}{2k}2^{n-1-2k}C_k$.
- # Dyck paths of length 2n with k DDUs = $\binom{n-1}{2k} 2^{n-1-2k} C_k$.

Exercise: Find the reciprocal bijection.

The height of Dyck paths

The height of a Dyck path is its maximum level.

The logarithmic height of Dyck paths

A Dyck path w has the height h(w). Then the logarithmic height $\ell h(w)$ is

$$\lfloor \log_2(1+h(w)) \rfloor$$

The logarithmic height of Dyck paths

$$\ell h(w) = k$$

$$\Leftrightarrow 2^k - 1 \le h(w)) \le 2^{k+1} - 1$$

The logarithmic height of Dyck paths

Theorem

The number of $\frac{Dyck}{Dyck}$ paths of length 2n with logarithmic height k = The number of full binary trees on n internal vertices and with Strahler number k.

Strahler number

max(k, k')

Strahler number

Strahler number

Frangon (1984) Knuth (2005)

$$S(t,x) = 1 + \frac{xt}{1-2t}S\left(\left(\frac{t}{1-2t}\right)^2,x\right)$$

Replace each vertex by a zigzag line.

Replace each vertex by a zigzag line.

Branching out along the zigzag lines.

Dyck paths

We can do the same with Dyck paths

Replace each vertex by a 2-colored horizontal path.

Replace each vertex by a 2-colored horizontal path.

Replace each vertex by a 2-colored horizontal path.

Obtaining a 2-colored Motzkin path.

Converting back a Dyck path.

Converting back a Dyck path.

Exercise: Prove that the process increases the logarithmic height 1 unit.

(Another) Chord diagram

Temperley - Lieb Algebra

The Temperley-Lieb algebra $TL_n(q)$ generated by $\{e_1, e_2, \dots, e_{n-1}\}$:

- $e_i^2 = qe_i$
- ② $e_i e_j = e_j e_i$ if |i j| > 1
- $e_i e_{i+1} e_i = e_i e_{i-1} e_i = e_i$

Diagram of e_i

Diagram of e_i

$$e_i^2 = \mathbf{q} e_i$$

Diagram of e_i

$$e_i e_j = e_j e_i$$

$$|i-j| > 1$$

Diagram of e_i

$$e_i e_{i+1} e_i = e_i$$

Exercise

Simplify: $e_1e_2e_4e_2e_1e_3e_2e_3e_2e_4$

Exercise

Exercise

The Normalized Temperley-Lieb algebra $NTL_n(q)$ generated by $\{e_1, e_2, \ldots, e_{n-1}\}$ is a Temperley-Lieb algebra with the following patterns forbidden

- \bullet e_i^2
- $e_i e_{i+1} e_i$

Staircase Decomposition

Staircase Decomposition

Lemma

The the higher staircase has the top (bottom) dimer strictly to the left of that of the lower staircase.

Recall: Bijection: Ordered Pairs -Dyck Paths

A permutation σ is 321-avoiding if there no i < j < k such that $\sigma(i) > \sigma(j) > \sigma(k)$.

Theorem

Strict heaps are equinumerous to 321-avoiding permutations.

Presentation Topic 1: Permutations with forbidden patterns and Catalan numbers.

- q-integer $[n]_q := 1 + q + q^2 + \ldots + q^{n-1}$
- ullet q-factorial $[n]_q!:=[1]_q\cdot [2]_q\cdot [3]_q\dots [n]_q$

$$\bullet \begin{bmatrix} n \\ k \end{bmatrix}_q = \frac{[n]_q!}{[n-k]_q![k]_q!}$$

- q-integer $[n]_q := 1 + q + q^2 + \ldots + q^{n-1}$
- ullet q-factorial $[n]_q!:=[1]_q\cdot [2]_q\cdot [3]_q\dots [n]_q$

$$\bullet \begin{bmatrix} n \\ k \end{bmatrix}_q = \frac{[n]_q!}{[n-k]_q![k]_q!}$$

q-binomial Coefficients

$$\begin{bmatrix} a+b \\ a \end{bmatrix}_q = ?$$

$$\begin{bmatrix} a+b \\ a \end{bmatrix}_q = ?$$

$$\begin{bmatrix} a+b \\ a \end{bmatrix}_q = ?$$

$$\sum_{\mathcal{F} \subset [a \times b]} q^{\operatorname{area}(\mathcal{F})} = \begin{bmatrix} a+b \\ a \end{bmatrix}_q$$

$$\sum_{\mathcal{F} \subset [a \times b]} q^{\operatorname{area}(\mathcal{F})} = \begin{bmatrix} a+b \\ a \end{bmatrix}_q$$

Exercise: Prove that the number of k-dimensional subspaces of \mathbb{F}_q^n is

$$\begin{bmatrix} n \\ k \end{bmatrix}_q$$

$$\sum_{\mathcal{F} \subset [a \times b]} q^{\operatorname{area}(\mathcal{F})} = \begin{bmatrix} a+b \\ a \end{bmatrix}_q$$

Exercise: Denote by p(j, k, n) the number of integer partitions of n into at most k parts and each part is at most j. Then

$$\sum_{n} p(j, k, n) \mathbf{q}^{n} = \begin{bmatrix} j+k \\ k \end{bmatrix}_{\mathbf{q}}.$$

$$C_n(q) := rac{1}{[n+1]_q} egin{bmatrix} 2n \\ n \end{bmatrix}_q$$

$$C_n(q) := \frac{1}{[n+1]_q} \begin{bmatrix} 2n \\ n \end{bmatrix}_q$$

$$C_n(q) := \frac{1}{[n+1]_q} \begin{bmatrix} 2n \\ n \end{bmatrix}_q$$

$$C_n(q) := \frac{1}{[n+1]_q} \begin{bmatrix} 2n \\ n \end{bmatrix}_q$$

$$maj(w) = 3 + 8 + 12 + 18 = 31$$

$$C_n(q) := \frac{1}{[n+1]_q} \begin{bmatrix} 2n \\ n \end{bmatrix}_q$$

$$area(w) = 18$$

$$\sum_{\textit{Dyck path } w} q^{\textit{area(w)}} t^{|w|/2}$$

Theorem $\sum_{Dyck\ path\ w}q^{area(w)}t^{|w|/2}=\frac{1}{1-\cfrac{t}{1-\cfrac{tq}{1-\cfrac{tq^2}{1-\cfrac{tq^3$

tq⁴

Polya *q*-Catalan Numbers

Polya *q*-Catalan Numbers

Polya *q*-Catalan Numbers

q-Bessel functions

$$bounce(w) = 4 + 6 + 9 + 11$$

bounce(
$$w$$
) = $4 + 6 + 9 + 11 = 30$

area and bounce statistics have the same distribution!

area and bounce statistics have the same distribution!

$$\sum_{\textit{Dyck path } w} q^{\textit{area}(w)} = \sum_{\textit{Dyck path } w} q^{\textit{bounce}(w)}$$

(q, t)-Catalan Numbers:

$$C_n(q, t) = \sum_{Dyck \ path \ w; \ |w|=2n} q^{area(w)} t^{bounce(w)}$$

$$C_n(q, t) = \sum_{Dyck \ path \ w; \ |w|=2n} q^{area(w)} t^{bounce(w)}$$

This polynomial is symmetric in q, t:

$$C_n(\mathbf{q},\mathbf{t}) = C_n(\mathbf{t},\mathbf{q})$$

$$C_n(q, t) = \sum_{Dyck \ path \ w; \ |w|=2n} q^{area(w)} t^{bounce(w)}$$

This polynomial is symmetric in q, t:

$$C_n(q, t) = C_n(t, q)$$

There is no bijective proof!

Original definition of (q, t)-Catalan Numbers

A. Garsia, M. Haiman (1994)

$$C_n(q,t) = \sum_{\lambda \vdash n} \frac{t^{2\sum_{c \in \lambda} l} q^{2\sum_{c \in \lambda} a} (1-t)(1-q) \prod_{c \in \lambda} (1-q^{a'}t^{l'}) \sum_{c \in \lambda} q^{a'}t^{l'}}{\prod_{c \in \lambda} (q^a - t^{l+1})(t^l - q^{a+1})}$$

Presentation Topic 2: (q, t)-Catalan numbers.

Presentation Topic 3: 'Kepler Towers' and Catalan numbers.

